One of my research interest is to identify foreshock sequences prior to a large earthquake. I believe that the foreshock sequence as a key role of the initiation/nucleation of the mainshock rupture. I am also studying about the migration of foreshocks toward mainshock’s initial break with slow rate that can be termed as migration of slow slip events in Indonesia’s  subduction zones. This includes my interest on slow-slip phenomena such as episodic or triggered tectonic (non-volcanic) tremor in Indonesia.

My undergraduate thesis about Foreshocks in Sumatra. Click Here For Downloads.

Penelitian rangkaian gempabumi pendahuluan (GP) dari masa ke masa. [Research about foreshock sequence all the time.]

Mogi (1963)


Kanamori (1981)










Berdasarkan gempabumi tahun 2009-2016-09-05 (sumber: ISC Event Bibliography) [Based on large earthquake in year 2009-2016-09-05]. Sort lines lexicographically ascending.

  1. Amoruso, A. and Crescentini, L., 2010. Limits on earthquake nucleation and other pre-seismic phenomena from continuous strain in the near field of the 2009 L’Aquila earthquake, Geophys. Res. Lett., 37, 10, L10307, DOI: 10.1029/2010GL043308
  2. Ando, R. and Imanishi, K., 2011. Possibility of Mw 9.0 mainshock triggered by diffusional propagation of after-slip from Mw 7.3 foreshock, Earth Planets Space, 63, 7, 767-771, DOI: 10.5047/eps.2011.05.016
  3. Aron, F., Cembrano, J., Astudillo, F., Allmendinger, R.W., and Arancibia, G., 2015. Constructing forearc architecture over megathrust seismic cycles: Geological snapshots from the Maule earthquake region, Chile, Geol. Soc. Am. Bull., 127, 3-4, 464-479, DOI: 10.1130/B31125.1
  4. Bedford, J., Moreno, M., Schurr, B., Bartsch, M., and Oncken, O., 2015. Investigating the final seismic swarm before the Iquique-Pisagua 2014 Mw 8.1 by comparison of continuous GPS and seismic foreshock data, Geophys. Res. Lett., 42, 10, 3820-3828, DOI: 10.1002/2015GL063953
  5. Bouchon, M., Durand, V., Marsan, D., Karabulut, H., and Schmittbuhl, J., 2013. The long precursory phase of most large interplate earthquakes, Nat. Geosci., 6, 4, 299-302, DOI: 10.1038/ngeo1770
  6. Bouchon, M., Marsan, D., Durand, V., Campillo, M., Perfettini, H., Madariaga, R., and Gardonio, B., 2016. Potential slab deformation and plunge prior to the Tohoku, Iquique and Maule earthquakes, Nat. Geosci., 9, 5, 380-383, DOI: 10.1038/ngeo2701
  7. Brodsky, E.E. and Lay, T., 2014. Recognizing Foreshocks from the 1 April 2014 Chile Earthquake, Science, 344, 6185, 700-702, DOI: 10.1126/science.1255202
  8. Bulut, F., 2015. Different phases of the earthquake cycle captured by seismicity along the North Anatolian Fault, Geophys. Res. Lett., 42, 7, 2219-2227, DOI: 10.1002/2015GL063721
  9. Calderoni, G., Rovelli, A., and Di Giovambattista, R., 2015. Transient anomaly in fault-zone trapped waves during the preparatory phase of the 6 April 2009, Mw 6.3 L’Aquila earthquake, Geophys. Res. Lett., 42, 6, 1750-1757, DOI: 10.1002/2015GL063176
  10. Cerdeña, I.D., del Fresno, C., and Moreno, A.G., 2014. Seismicity Patterns Prior to the 2011 El Hierro Eruption, Bull. Seism. Soc. Am., 104, 1, 567-575, DOI: 10.1785/0120130200
  11. Cesca, S., Grigoli, F., Heimann, S., Dahm, T., Kriegerowski, M., Sobiesiak, M., Tassara, C., and Olcay, M., 2016. The Mw 8.1 2014 Iquique, Chile, seismic sequence: a tale of foreshocks and aftershocks, Geophys. J. Int., 204, 3, 1766-1780, DOI: 10.1093/gji/ggv544
  12. Chen, X. and Shearer, P.M., 2013. California foreshock sequences suggest aseismic triggering process, Geophys. Res. Lett., 40, 11, 2602-2607, DOI: 10.1002/grl.50444
  13. Chiaraluce, L., Valoroso, L., Piccinini, D., Di Stefano, R., and De Gori, P., 2011. The anatomy of the 2009 L’Aquila normal fault system (central Italy) imaged by high resolution foreshock and aftershock locations, J. Geophys. Res., 116, B12, B12311, DOI: 10.1029/2011JB008352
  14. Chu, R., Wei, S., Helmberger, D.V., Zhan, Z., Zhu, L., and Kanamori, H., 2011. Initiation of the great Mw 9.0 Tohoku-Oki earthquake, Earth Planet. Sci. Lett., 308, 3-4, 277-283, DOI: 10.1016/j.epsl.2011.06.031
  15. Cinti, F.R., Pantosti, D., De Martini, P.M., Pucci, S., Civico, R., Pierdominici, S., Cucci, L., Brunori, C.A., Pinzi, S., and Patera, A., 2011. Evidence for surface faulting events along the Paganica fault prior to the 6 April 2009 L’Aquila earthquake (central Italy), J. Geophys. Res., 116, B7, B07308, DOI: 10.1029/2010JB007988
  16. Contoyiannis, Y.F., Potirakis, S.M., and Eftaxias, K., 2013. The Earth as a living planet: human-type diseases in the earthquake preparation process, Nat. Hazards Earth Syst. Sci., 13, 1, 125-139, DOI: 10.5194/nhess-13-125-2013
  17. Daskalaki, E., Spiliotis, K., Siettos, C., Minadakis, G., and Papadopoulos, G.A., 2016. Foreshocks and short-term hazard assessment of large earthquakes using complex networks: the case of the 2009 L’Aquila earthquake, Nonlin. Processes Geophys., 23, 4, 241-256, DOI: 10.5194/npg-23-241-2016
  18. Del Fresno, C., Domínguez Cerdeña, I., Cesca, S., and Buforn, E., 2015. The 8 October 2011 Earthquake at El Hierro (Mw 4.0): Focal Mechanisms of the Mainshock and Its Foreshocks, Bull. Seism. Soc. Am., 105, 1, 330-340, DOI: 10.1785/0120140151
  19. Dologlou, E., 2014. Critical dynamic processes prior to destructive earthquakes, Int. J. Remote Sens., 35, 24, 8208-8216, DOI: 10.1080/01431161.2014.980921
  20. Eisner, R., 2013. Preparing for the Worst Case… Because It Just Might Happen, Earthq. Spectra, 29, S1, S339-S340, DOI: 10.1193/8755-2930-29.s1.S339
  21. Fedotov, S.A. and Solomatin, A.V., 2015. The long-term earthquake forecast for the Kuril-Kamchatka island arc for the September 2013 to August 2018 period; the seismicity of the arc during preceding deep-focus earthquakes in the sea of Okhotsk (in 2008, 2012, and 2013 at M = 7.7, 7.7, and 8.3), J. Volcanol. Seismolog., 9, 2, 65-80, DOI: 10.1134/S0742046315020025
  22. Finkelstein, M., Price, C., and Eppelbaum, L., 2012. Is the geodynamic process in preparation of strong earthquakes reflected in the geomagnetic field?, J. Geophys. Eng., 9, 5, 585-594, DOI: 10.1088/1742-2132/9/5/585
  23. Frohlich, C. and Brunt, M., 2013. Two-year survey of earthquakes and injection/production wells in the Eagle Ford Shale, Texas, prior to the 20 October 2011 earthquake, Earth Planet. Sci. Lett., 379, 56-63, DOI: 10.1016/j.epsl.2013.07.025
  24. Goldfinger, C., Ikeda, Y., Yeats, R.S., and Ren, J., 2013. Superquakes and Supercycles, Seismol. Res. Lett., 84, 1, 24-32, DOI: 10.1785/0220110135
  25. Graham, S.E., DeMets, C., Cabral-Cano, E., Kostoglodov, V., Walpersdorf, A., Cotte, N., Brudzinski, M., McCaffrey, R., and Salazar-Tlaczani, L., 2014. GPS constraints on the 2011–2012 Oaxaca slow slip event that preceded the 2012 March 20 Ometepec earthquake, southern Mexico, Geophys. J. Int., 197, 3, 1593-1607, DOI: 10.1093/gji/ggu019
  26. Gusman, A.R., Fukuoka, M., Tanioka, Y., and Sakai, S., 2013. Effect of the largest foreshock (Mw 7.3) on triggering the 2011 Tohoku earthquake (Mw 9.0), Geophys. Res. Lett., 40, 3, 497-500, DOI: 10.1002/grl.50153
  27. Hasegawa, A. and Yoshida, K., 2015. Preceding seismic activity and slow slip events in the source area of the 2011 Mw 9.0 Tohoku-Oki earthquake: a review, Geosci. Lett., 2, 6, , DOI: 10.1186/s40562-015-0025-0
  28. Herman, M.W., Furlong, K.P., Hayes, G.P., and Benz, H.M., 2016. Foreshock triggering of the 1 April 2014 Mw 8.2 Iquique, Chile, earthquake, Earth Planet. Sci. Lett., 447, 119-129, DOI: 10.1016/j.epsl.2016.04.020
  29. Hicks, S.P., Rietbrock, A., Haberland, C.A., Ryder, I.M.A., Simons, M., and Tassara, A., 2012. The 2010 Mw 8.8 Maule, Chile earthquake: Nucleation and rupture propagation controlled by a subducted topographic high, Geophys. Res. Lett., 39, 19, L19308, DOI: 10.1029/2012GL053184
  30. Hino, R., Inazu, D., Ohta, Y., Ito, Y., Suzuki, S., Iinuma, T., Osada, Y., Kido, M., Fujimoto, H., and Kaneda, Y., 2014. Was the 2011 Tohoku-Oki earthquake preceded by aseismic preslip? Examination of seafloor vertical deformation data near the epicenter, Mar. Geophys. Res., 35, 3, 181-190, DOI: 10.1007/s11001-013-9208-2
  31. Hirose, F., Miyaoka, K., Hayashimoto, N., Yamazaki, T., and Nakamura, M., 2011. Outline of the 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0) -seismicity: Foreshocks, mainshock, aftershocks, and induced activity, Earth Planets Space, 63, 7, 513-518, DOI: 10.5047/eps.2011.05.019
  32. Hirose, H., 2011. Tilt records prior to the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 7, 655-658, DOI: 10.5047/eps.2011.05.009
  33. Hori, T. and Miyazaki, S., 2011. A possible mechanism of M 9 earthquake generation cycles in the area of repeating M 7-8 earthquakes surrounded by aseismic sliding, Earth Planets Space, 63, 7, 773-777, DOI: 10.5047/eps.2011.06.022
  34. Huang, Q. and Ding, X., 2012. Spatiotemporal Variations of Seismic Quiescence prior to the 2011 M 9.0 Tohoku Earthquake Revealed by an Improved Region-Time-Length Algorithm, Bull. Seism. Soc. Am., 102, 4, 1878-1883, DOI: 10.1785/0120110343
  35. Julius, J.-M., Melnick, D., Brill, D., and Strecker, M.R., 2015. Segmentation of the 2010 Maule Chile earthquake rupture from a joint analysis of uplifted marine terraces and seismic-cycle deformation patterns, Quat. Sci. Rev., 113, 171-192, DOI: 10.1016/j.quascirev.2015.01.005
  36. Kato, A. and Nakagawa, S., 2014. Multiple slow-slip events during a foreshock sequence of the 2014 Iquique, Chile Mw 8.1 earthquake, Geophys. Res. Lett., 41, 15, 5420-5427, DOI: 10.1002/2014GL061138
  37. Kato, A., Fukuda, J., Kumazawa, T., and Nakagawa, S., 2016. Accelerated nucleation of the 2014 Iquique, Chile Mw 8.2 Earthquake, Sci. Rep., 6, , DOI: 10.1038/srep24792
  38. Kato, A., Fukuda, J., Nakagawa, S., and Obara, K., 2016. Foreshock migration preceding the 2016 Mw 7.0 Kumamoto earthquake, Japan, Geophys. Res. Lett., , DOI: 10.1002/2016GL070079
  39. Kato, N., 2012. Fracture energies at the rupture nucleation points of large interplate earthquakes, Earth Planet. Sci. Lett., 353–354, 11, 190 – 197, DOI: 10.1016/j.epsl.2012.08.015
  40. Kawamura, M., Wu, Y.-H., Kudo, T., and Chen, C.C., 2013. A statistical feature of anomalous seismic activities prior to large shallow earthquakes in Japan revealed by the Pattern Informatics method, Nat. Hazards Earth Syst. Sci. Discuss., 1, 2, 721-745, DOI: 10.5194/nhessd-1-721-2013
  41. Lin, W., Saito, S., Sanada, Y., Yamamoto, Y., Hashimoto, Y., and Kanamatsu, T., 2011. Principal horizontal stress orientations prior to the 2011 Mw 9.0 Tohoku-Oki, Japan, earthquake in its source area, Geophys. Res. Lett., 38, L00G10, DOI: 10.1029/2011GL049097
  42. Liu, P.-X. and L, X.-J., 2012. On Foreshock Identification and Short-term Predictability of the 2010 Yushu Ms7.1 Earthquake, Earthquake 32, 3, 47-51.
  43. Liu, R., 2013. Source processes of large earthqukes preceding the 2011 Tohoku-Oki earthquake, determined by joint inversion of teleseismic and near-source data, Bull. IISEE 47, 7-12.
  44. Marsan, D. and Enescu, B., 2012. Modeling the foreshock sequence prior to the 2011, MW 9.0 Tohoku, Japan, earthquake, J. Geophys. Res., 117, B6, B06316, DOI: 10.1029/2011JB009039
  45. Matsu’ura, M., 2012. The 2011 Mega-thrust earthquake off Northeast Japan and multiple earthquake cycles in subduction zones, J. Geol. Soc. Japan, 118, 5, 313-322, DOI: 10.5575/geosoc.2012.0028
  46. Mavrommatis, A.P., Segall, P., Uchida, N., and Johnson, K.M., 2015. Long-term acceleration of aseismic slip preceding the Mw 9 Tohoku-oki earthquake: Constraints from repeating earthquakes, Geophys. Res. Lett., 42, 22, 9717-9725, DOI: 10.1002/2015GL066069
  47. Mavrommatis, A.P., Segall, P., and Johnson, K.M., 2014. A decadal-scale deformation transient prior to the 2011 Mw 9.0 Tohoku-oki earthquake, Geophys. Res. Lett., 41, 13, 4486-4494, DOI: 10.1002/2014GL060139
  48. Michael, A.J., 2012. Fundamental Questions of Earthquake Statistics, Source Behavior, and the Estimation of Earthquake Probabilities from Possible Foreshocks, Bull. Seism. Soc. Am., 102, 6, 2547-2562, DOI: 10.1785/0120090184
  49. Mitsui, Y., Kato, N., Fukahata, Y., and Hirahara, K., 2012. Megaquake cycle at the Tohoku subduction zone with thermal fluid pressurization near the surface, Earth Planet. Sci. Lett., 325-326, 21 – 26, DOI: 10.1016/j.epsl.2012.01.026
  50. Mora-Stock, C., Thorwart, M., Wunderlich, T., Bredemeyer, S., Hansteen, T.H., and Rabbel, W., 2014. Comparison of seismic activity for Llaima and Villarrica volcanoes prior to and after the Maule 2010 earthquake, Int. J. Earth Sci., 103, 7, 2015-2028, DOI: 10.1007/s00531-012-0840-x
  51. Nanjo, K.Z., Hirata, N., Obara, K., and Kasahara, K., 2012. Decade-scale decrease in b value prior to the M9-class 2011 Tohoku and 2004 Sumatra quakes, Geophys. Res. Lett., 39, 20, L20304, DOI: 10.1029/2012GL052997
  52. Nettles, M., Ekström, G., and Koss, H.C., 2011. Centroid-moment-tensor analysis of the 2011 off the pacific coast of tohoku earthquake and its larger foreshocks and aftershocks, Earth Planets Space, 63, 7, 519-523, DOI: 10.5047/eps.2011.06.009
  53. Ohtani, M., Hirahara, K., Hori, T., and Hyodo, M., 2014. Observed change in plate coupling close to the rupture initiation area before the occurrence of the 2011 Tohoku earthquake: Implications from an earthquake cycle model, Geophys. Res. Lett., 41, 6, 1899-1906, DOI: 10.1002/2013GL058751
  54. Ozawa, S., Nishimura, T., Munekane, H., Suito, H., Kobayashi, T., Tobita, M., and Imakiire, T., 2012. Preceding, coseismic, and postseismic slips of the 2011 Tohoku earthquake, Japan, J. Geophys. Res., 117, B7, B07404, DOI: 10.1029/2011JB009120
  55. Papadopoulos, G.A. and Minadakis, G., 2016. Foreshock patterns preceding great earthquakes in the subduction zone of Chile, Pure Appl. Geophys., 1-25, DOI: 10.1007/s00024-016-1337-5
  56. Papadopoulos, G.A., Charalampakis, M., Fokaefs, A., and Minadakis, G., 2010. Strong foreshock signal preceding the L’Aquila (Italy) earthquake (Mw 6.3) of 6 April 2009, Nat. Hazards Earth Syst. Sci., 10, 1, 19-24, DOI: 10.5194/nhess-10-19-2010
  57. Perfettini, H. and Avouac, J.P., 2014. The seismic cycle in the area of the 2011 Mw 9.0 Tohoku-Oki earthquake, J. Geophys. Res., 119, 5, 4469-4515, DOI: 10.1002/2013JB010697
  58. Poli, P., Prieto, G., Rivera, E., and Ruiz, S., 2016. Earthquakes initiation and thermal shear instability in the Hindu-Kush intermediate-depth nest, Geophys. Res. Lett., 43, 4, 1537-1542, DOI: 10.1002/2015GL067529
  59. Pulinets, S., 2012. Low-Latitude Atmosphere-Ionosphere Effects Initiated by Strong Earthquakes Preparation Process, Int. J. Geophys., 2012, Article ID 131842, 1-14, DOI: 10.1155/2012/131842
  60. Ruiz, S., Metois, M., Fuenzalida, A., Ruiz, J., Leyton, F., Grandin, R., Vigny, C., Madariaga, R., and Campos, J., 2014. Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw 8.1 earthquake, Science, 345, 6201, 1165-1169, DOI: 10.1126/science.1256074
  61. Savage, M.K., 2010. The role of fluids in earthquake generation in the 2009 Mw 6.3 L’Aquila, Italy, earthquake and its foreshocks, Geology, 38, 11, 1055-1056, DOI: 10.1130/focus112010.1
  62. Schurr, B., Asch, G., Hainzl, S., Bedford, J., Hoechner, A., Palo, M., Wang, R., Moreno, M., Bartsch, M., Zhang, Y., Oncken, O., Tilmann, F., Dahm, T., Victor, P., Barrientos, S., and Vilotte, J.-P., 2014. Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake, Nature, 512, 299-302, DOI: 10.1038/nature13681
  63. Sharma, S., Baruah, S., Sahu, O.P., Bora, P.K., and Duarah, R., 2013. Low b-value prior to the Indo-Myanmar subduction zone earthquakes and precursory swarm before the May 1995 M 6.3 earthquake, J. Asian Earth Sci., 73, 9, 176-183, DOI: 10.1016/j.jseaes.2013.04.019
  64. Shebalin, P., 2011. Large-scale short-term seismicity activation prior to the strongest earthquakes of Japan and the Kurile Islands, Izv. Atmos. Oceanic Phys., 47, 8, 922-928, DOI: 10.1134/S0001433811080093
  65. Shelly, D.R., Moran, S.C., and Thelen, W.A., 2013. Evidence for fluid-triggered slip in the 2009 Mount Rainier, Washington earthquake swarm, Geophys. Res. Lett., 40, 8, 1506-1512, DOI: 10.1002/grl.50354
  66. Shibazaki, B., Matsuzawa, T., Tsutsumi, A., Ujiie, K., Hasegawa, A., and Ito, Y., 2011. 3D modeling of the cycle of a great Tohoku-oki earthquake, considering frictional behavior at low to high slip velocities, Geophys. Res. Lett., 38, 21, L21305, DOI: 10.1029/2011GL049308
  67. Skordas, E.S. and Sarlis, N.V., 2014. On the anomalous changes of seismicity and geomagnetic field prior to the 2011 9.0 Tohoku earthquake, J. Asian Earth Sci., 80, 161-164, DOI: 10.1016/j.jseaes.2013.11.008
  68. Špičák, A. and Vaněk, J., 2014. Kamchatka subduction zone, May 2013: the Mw 8.3 deep earthquake, preceding shallow swarm and numerous deep aftershocks, Studia Geophys. Geod., 58, 1, 76-83, DOI: 10.1007/s11200-013-1038-9
  69. Sugan, M., Kato, A., Miyake, H., Nakagawa, S., and Vuan, A., 2014. The preparatory phase of the 2009 Mw 6.3 L’Aquila earthquake by improving the detection capability of low-magnitude foreshocks, Geophys. Res. Lett., 41, 17, 6137-6144, DOI: 10.1002/2014GL061199
  70. Sukrungsri, S. and Pailoplee, S., 2015. Precursory seismicity changes prior to major earthquakes along the Sumatra-Andaman subduction zone: a region-time-length algorithm approach, Earth Planets Space, 67, 1, 97, DOI: 10.1186/s40623-015-0269-0
  71. Tanaka, S., 2012. Tidal triggering of earthquakes prior to the 2011 Tohoku-Oki earthquake (Mw 9.1), Geophys. Res. Lett., 39, L00G26, DOI: 10.1029/2012GL051179
  72. Trubienko, O., Fleitout, L., Garaud, J.-D., and Vigny, C., 2013. Interpretation of interseismic deformations and the seismic cycle associated with large subduction earthquakes, Tectonophysics, 589, 3, 126 – 141, DOI: 10.1016/j.tecto.2012.12.027
  73. Uchida, N. and Matsuzawa, T., 2011. Coupling coefficient, hierarchical structure, and earthquake cycle for the source area of the 2011 off the Pacific coast of Tohoku earthquake inferred from small repeating earthquake data, Earth Planets Space, 63, 7, 675-679, DOI: 10.5047/eps.2011.07.006
  74. Uetake, T., 2012. Long-period ground motion of the Tokyo bay area observed from the 2011 off the Pacific coast of Tohoku earthquake, foreshock and aftershocks, J. Japan Assoc. Earthq. Eng., 12, 5, 5_192-5_206, DOI: 10.5610/jaee.12.5_192
  75. Walter, J.I., Meng, X., Peng, Z., Schwartz, S.Y., Newman, A.V., and Protti, M., 2015. Far-field triggering of foreshocks near the nucleation zone of the 5 September 2012 (MW 7.6) Nicoya Peninsula, Costa Rica earthquake, Earth Planet. Sci. Lett., 431, 75-86, DOI: 10.1016/j.epsl.2015.09.017
  76. Wen, Y.-Y., 2014. Rupture behaviors of the 2011 Tohoku earthquake and its strongest foreshock through an empirical Green’s function deconvolution analysis, J. Asian Earth Sci., 81, 123-128, DOI: 10.1016/j.jseaes.2013.11.022
  77. Wen, Y.-Y., Chen, C.-C., Wu, Y.-H., Chan, C.-H., Wang, Y.-J., and Yeh, Y.-L., 2016. Spatiotemporal investigation of seismicity and Coulomb stress variations prior to the 2010 ML 6.4 Jiashian, Taiwan earthquake, Geophys. Res. Lett., , DOI: 10.1002/2016GL070633
  78. Xie, C.-D., Lei, X.-L., Wu, X.-P., Hu, X.-L., Zhao, X.-Y., and Zhu, R.-H., 2014. The effect on the nucleation and failure of MS7.0 Lushan earthquake induced by the MS8.0 Wenchuan earthquake, Chinese J. Geophys., 57, 3, 332-344, DOI: 10.1002/cjg2.20107
  79. Yagi, Y., Okuwaki, R., Enescu, B., Hirano, S., Yamagami, Y., Endo, S., and Komoro, T., 2014. Rupture process of the 2014 Iquique Chile earthquake in relation with the foreshock activity, Geophys. Res. Lett., 41, 12, 4201-4206, DOI: 10.1002/2014GL060274
  80. Yokota, Y. and Koketsu, K., 2015. A very long-term transient event preceding the 2011 Tohoku earthquake, Nature Communications, 6, , DOI: 10.1038/ncomms6934
  81. Zhen-Xia, Z., Xin-Qiao, L., Shu-Gui, W., Yu-Qian, M., SHEN Xu-Hui, C.H.-R., Ping, W., Xin-Zhao, Y., and Ya-Hong, Y., 2012. DEMETER satellite observations of energetic particle prior to Chile earthquake, Chinese J. Geophys. 55, 5, 1581.


References from selected papers above:

  1. Ariyoshi, K. et al. Migration process of very low-frequency events based on a chain-reaction model and its application to the detection of preseismic slip for megathrust earthquakes. Earth Planets Space 64, 693–702 (2012).
  2. Bouchon, M., H. Karabulut, M. Aktar, S. Özalaybey, J. Schmittbuhl, and M.-P. Bouin (2011), Extended nucleation of the 1999 MW7.6 Izmit earthquake, Science, 331, 877–880, doi:10.1126/science.1197341.
  3. Bürgmann, R. Warning signs of the Iquique earthquake. Nature 512, 258–259 (2014).doi:10.1038/nature13655
  4. Chen, T., and N. Lapusta (2009), Scaling of small repeating earthquakes explained by interaction of seismic and aseismic slip in a rate and state fault model, J. Geophys. Res., 114, B01311, doi:10.1029/2008JB005749.
  5. Chen, X., P. M. Shearer, and R. E. Abercrombie (2012), Spatial migration of earthquakes within seismic clusters in Southern California: Evidence for fluid diffusion, J. Geophys. Res., 117, B04301, doi:10.1029/2011JB008973.
  6. Chlieh, M., J. B. De Chabalier, J. C. Ruegg, R. Armijo, R. Dmowska, J. Campos, and K. L. Feigl (2004), Crustal deformation and fault slip during the seismic cycle in the North Chile subduction zone, from GPS and InSAR observations, Geophys. J. Int., 158(2), 695–711.
  7. Gardonio, B. et al. Changes in seismicity and stress loading on subduction faults in the Kanto region, Japan, 2011–2014. J. Geophys. Res. Solid Earth. 120, 2616–2626 (2015).
  8. Ide, S., A. Baltay, and G. C. Beroza (2011), Shallow Dynamic Overshoot and Energetic Deep Rupture in the 2011 Mw 9.0 Tohoku-Oki Earthquake, Science, 332, 1426–1429, doi:10.1126/science.1207020.
  9. Igarashi, T. (2010), Spatial changes of inter-plate coupling inferred from sequences of small repeating earthquakes in Japan, Geophys. Res. Lett., 37, L20304, doi:10.1029/2010GL044609.
  10. Kanamori, H., and E. E. Brodsky (2001), The physics of earthquakes, Phys. Today, 54(6), 34–40, doi:10.1063/1.1387590.
  11. Kato, A., K. Obara, T. Igarashi, H. Tsuruoka, S. Nakagawa, and N. Hirata (2012), Propagation of slow slip leading up to the 2011Mw 9.0 Tohoku-Oki earthquake, Science, 335, 705–708, doi:10.1126/science.1215141.
  12. Kumazawa, T. & Ogata, Y. Quantitative description of induced seismic activity before and after the 2011 Tohoku-Oki earthquake by nonstationary ETAS models. J. Geophys. Res. Solid Earth 118, 6165–6182 (2013).
  13. Latour, S., Schubnel, A., Nielsen, S., Madariaga, R. & Vinciguerra, S. Characterization of nucleation during laboratory earthquakes. Geophys. Res. Lett. 40, 5064–5069 (2013).
  14. Lay, T., H. Yue, E. E. Brodsky, and C. An (2014), The April 1, 2014 Iquique, Chile Mw 8.1 earthquake rupture sequence, Geophys. Res. Lett., 41, 3818–3825, doi:10.1002/2014GL060238.
  15. Lengliné, O., Ampuero, J.-P., Luo, Y., Durand, V. & Ruiz, J. Segmentation and Large-Scale Nucleation of the 2014 Pisagua Earthquake Sequence. Eos Trans. AGU 95(51), Fall Meet. Suppl., Abstract S34B-05 (2014).
  16. Lohman, R. B. & McGuire, J. J. Earthquake swarms driven by aseismic creep in the Salton Trough, California. J. Geophys. Res. 112, B04405 (2007).
  17. Madariaga, R. Dynamics of an expanding circular fault. Bull. Seism. Soc. Am. 66, 639–666 (1976).
  18. Marsan, D., Reverso, T., Helmstetter, A. & Enescu, B. Slow slip and aseismic deformation episodes associated with the subducting Pacific plate offshore Japan, revealed by changes in seismicity. J. Geophys. Res. Solid Earth 118, 4900–4909 (2013).
  19. Matsuzawa, T., Uchida, N., Igarashi, T., Okada, T. & Hasegawa, A. Repeating earthquakes and quasi-static slip on the plate boundary east off northern Honshu, Japan. Earth Planets Space 56, 803–811 (2004).
  20. Moreno, M., et al. (2011), Heterogeneous plate locking in the South–Central Chile subduction zone: Building up the next great earthquake, Earth Planet. Sci. Lett., 305(3), 413–424, doi:10.1016/j.epsl.2011.03.025.
  21. Métois, M., A. Socquet, C. Vigny, D. Carrizon, S. Peyrat, A. Delorme, E. Maureira, M.-C. Valderas-Bermejo, and I. Ortega (2013), Revisiting the North Chile seismic gap segmentation using GPS-derived interseismic coupling, Geophys. J. Int., 194, 1283–1294, doi:10.1093/gji/ggt183.
  22. Nadeau, R. M., and L. R. Johnson (1998), Seismological studies at Parkfield VI: Moment release rates and estimates of source parameters for small repeating earthquakes, Bull. Seismol. Soc. Am., 88, 790–814.
  23. Noda, H., M. Nakatani, and T. Hori (2013), Large nucleation before large earthquakes is sometimes skipped due to cascade-up – Implications from a rate and state simulation of faults with hierarchical asperities, J. Geophys. Res. Solid Earth, 118, 2924–2952, doi:10.1002/jgrb.50211.
  24. Ohnaka, M. & Shen, L. Scaling of the shear rupture process from nucleation to dynamic propagation: Implications of geometric irregularity of the rupturing surfaces. J. Geophys. Res. 104(B1), 817–844 (1999).
  25. Stein, R. S. (1999), The role of stress transfer in earthquake occurrence, Nature, 402(6762), 605–609.
  26. Suito, H., T. Nishimura, M. Tobita, T. Imakiire, and S. Ozawa (2011), Interplate fault slip along the Japan Trench before the occurrence of the 2011 off the Pacific coast of Tohoku Earthquake as inferred from GPS data, Earth Planets Space, 63(7), 615–619, doi:10.5047/eps.2011.06.053.
  27. Uchida, N. & Matsuzawa, T. Pre- and post-seismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture. Earth Planet. Sci. Lett. 374, 81–91 (2013).
  28. Utsu, T. (1999), Seismicity Studies: a Comprehensive Review, University of Tokyo Press, Tokyo (876 pp.).
  29. Vidale, J. E. & Shearer, P. M. A survey of 71 earthquake bursts across southern California: Exploring the role of pore fluid pressure fluctuations and aseismic slip as drivers. J. Geophys. Res. 111, B05312 (2006).
  30. Villegas-Lanza, J. C. et al. A mixed seismic–aseismic stress release episode in the Andean subduction zone. Nat. Geosci. 9, 150–154 (2016).


  1. Brodsky, E., 2011, The spatial density of foreshocks. Geophys. Res. Lett. 38, L10305.
  2. Chen, X., dan P.M. Shearer, 2015, Analysis of foreshock sequences in California and implications for earthquake triggering, Pure Appl. Geophys.
  3. Dodge, D.A., G.C. Beroza, dan W. Ellsworth, 1995, Foreshock sequence of the 1992 Landers, California, earthquake and its implications for earthquake nucleation, J. Geophys. Res. 100, No. B6, 9865–9880.
  4. Doi, I., dan H. Kawakata, 2013, A non‐accelerating foreshock sequence followed by a short period of quiescence for a large inland earthquake, Geophys. Res. Lett. 39, No. 11, L11308.
  5. Jones, L.M., 1984, Foreshocks (1966–1980) in the San Andreas system, California, Bull. Seismol. Soc. Am., 74(4), 1361–1380.
  6. Jones, L.M., dan P. Molnar, 1979, Some characteristics of foreshocks and their possible relationship to earthquake prediction and premonitory slip on faults, J. Geophys. Res. 84, No. B7, 3596–3608.
  7. Mignan, A., 2014, The debate on the prognostic value of earthquake foreshocks: a meta-analysis. Sci. Rep. 4, 4099.
  8. Mogi, K., 1967, Effect of Intermediate Principal Stress On Rock Failure, J. Geophys. Res., 72, 5117.
  9. Mogi, K., 1968, Source locations of elastic shocks in the fracturing process in rocks, Bull. Earthq. Res. Inst., Univ. Tokyo, 46, 1103–1125.
  10. Wu, C., Meng, X., Peng, Z., dan Ben-Zion, Y., 2014, Lack of spatio-temporal localization of foreshocks before the 1999 Mw7.1 Duzce, Turkey earthquake, Bull. Seismol. Soc. Am. 104 (1), 560–566.