Foreshocks and earthquake nucleation

Reading List (printed papers for personal use) – Foreshocks and earthquake nucleation

  • Kato, A. and Ben-Zion, Y., 2021. The generation of large earthquakes. Nature Reviews Earth & Environment, 2(1), pp.26-39.
  • Shimojo, K., Enescu, B., Yagi, Y. and Takeda, T., 2021. Nucleation process of the 2011 northern Nagano earthquake from nearby seismic observations. Scientific Reports, 11(1), pp.1-10.
  • Huang, H., Meng, L., Bürgmann, R., Wang, W. and Wang, K., 2020. Spatio-temporal foreshock evolution of the 2019 M 6.4 and M 7.1 Ridgecrest, California earthquakes. Earth and Planetary Science Letters, 551, p.116582.
  • Bouchon, M., Karabulut, H., Aktar, M., Özalaybey, S., Schmittbuhl, J., Bouin, M.P. and Marsan, D., 2021. The nucleation of the Izmit and Düzce earthquakes: some mechanical logic on where and how ruptures began. Geophysical Journal International, 225(3), pp.1510-1517.
  • Igarashi, T. and Kato, A., 2021. Evolution of aseismic slip rate along plate boundary faults before and after megathrust earthquakes. Communications Earth & Environment, 2(1), pp.1-7.
  • Feng, T., Wu, J., Fang, L., Guo, X., Cai, Y. and Wang, W., 2021. Foreshocks of the 2018 ML 4.0 Shimian earthquake in the Anninghe Fault and its implications for earthquake nucleation. Seismological Research Letters, 92(3), pp.1937-1949.
  • Sánchez‐Reyes, H., Essing, D., Beaucé, E. and Poli, P., 2021. The imbricated foreshock and aftershock activities of the Balsorano (Italy) Mw 4.4 normal fault earthquake and implications for earthquake initiation. Seismological Research Letters, 92(3), pp.1926-1936.
  • Durand, V., Bentz, S., Kwiatek, G., Dresen, G., Wollin, C., Heidbach, O., Martínez‐Garzòn, P., Cotton, F., Nurlu, M. and Bohnhoff, M., 2020. A two‐scale preparation phase preceded an Mw 5.8 earthquake in the Sea of Marmara offshore Istanbul, Turkey. Seismological Research Letters, 91(6), pp.3139-3147.
  • Mordret, A., Brenguier, F., Causse, M., Boué, P., Voisin, C., Dumont, I., Vernon, F.L. and Ampuero, J.P., 2020. Seismic stereometry reveals preparatory behavior and source kinematics of intermediate‐size earthquakes. Geophysical Research Letters, 47(17), p.e2020GL088563.
  • Schurr, B., Moreno, M., Tréhu, A.M., Bedford, J., Kummerow, J., Li, S. and Oncken, O., 2020. Forming a Mogi doughnut in the years prior to and immediately before the 2014 M8. 1 Iquique, northern Chile, earthquake. Geophysical Research Letters, 47(16), p.e2020GL088351.
  • Yao, D., Huang, Y., Peng, Z. and Castro, R.R., 2020. Detailed investigation of the foreshock sequence of the 2010 Mw7. 2 El Mayor‐Cucapah earthquake. Journal of Geophysical Research: Solid Earth, 125(6), p.e2019JB019076.
  • Sibson, R.H., 2020. Preparation zones for large crustal earthquakes consequent on fault-valve action. Earth, Planets and Space, 72(1), pp.1-20.
  • Sibson, R.H., 2020. Dual‐driven fault failure in the lower seismogenic zone. Bulletin of the Seismological Society of America, 110(2), pp.850-862.
  • Gardonio, B., Schubnel, A., Das, S., Lyon‐Caen, H., Marsan, D., Bouchon, M. and Kato, A., 2020. The preseismic and postseismic phases of the 700‐km deep M 7.9 Bonin Islands earthquake, Japan. Geophysical Research Letters, 47(1), p.e2019GL085589.
  • Yoon, C.E., Yoshimitsu, N., Ellsworth, W.L. and Beroza, G.C., 2019. Foreshocks and mainshock nucleation of the 1999 Mw 7.1 Hector Mine, California, Earthquake. Journal of Geophysical Research: Solid Earth, 124(2), pp.1569-1582.
  • Kuna, V.M., Nábělek, J.L. and Braunmiller, J., 2019. Mode of slip and crust–mantle interaction at oceanic transform faults. Nature Geoscience, 12(2), pp.138-142.
  • McMahon, N.D., Yeck, W.L., Stickney, M.C., Aster, R.C., Martens, H.R. and Benz, H.M., 2019. Spatiotemporal analysis of the foreshock–mainshock–aftershock sequence of the 6 July 2017 Mw 5.8 Lincoln, Montana, earthquake. Seismological Research Letters, 90(1), pp.131-139.
  • Malin, P.E., Bohnhoff, M., Blümle, F., Dresen, G., Martínez-Garzón, P., Nurlu, M., Ceken, U., Kadirioglu, F.T., Kartal, R.F., Kilic, T. and Yanik, K., 2018. Microearthquakes preceding a M4. 2 earthquake offshore Istanbul. Scientific Reports, 8(1), pp.1-11.
  • Voss, N., Dixon, T.H., Liu, Z., Malservisi, R., Protti, M. and Schwartz, S., 2018. Do slow slip events trigger large and great megathrust earthquakes?. Science Advances, 4(10), p.eaat8472.
  • Nishikawa, T. and Ide, S., 2018. Recurring slow slip events and earthquake nucleation in the source region of the M 7 Ibaraki‐Oki earthquakes revealed by earthquake swarm and foreshock activity. Journal of Geophysical Research: Solid Earth, 123(9), pp.7950-7968.
  • Gardonio, B., Jolivet, R., Calais, E. and Leclère, H., 2018. The April 2017 Mw6.5 Botswana earthquake: an intraplate event triggered by deep fluids. Geophysical Research Letters, 45(17), pp.8886-8896.
  • Gomberg, J., 2018. Unsettled earthquake nucleation. Nature Geoscience, 11(7), pp.463-464.
  • Ellsworth, W.L. and Bulut, F., 2018. Nucleation of the 1999 Izmit earthquake by a triggered cascade of foreshocks. Nature Geoscience, 11(7), pp.531-535.
  • Tape, C., Holtkamp, S., Silwal, V., Hawthorne, J., Kaneko, Y., Ampuero, J.P., Ji, C., Ruppert, N., Smith, K. and West, M.E., 2018. Earthquake nucleation and fault slip complexity in the lower crust of central Alaska. Nature Geoscience, 11(7), pp.536-541.
  • Warren-Smith, E., Fry, B., Kaneko, Y. and Chamberlain, C.J., 2018. Foreshocks and delayed triggering of the 2016 MW7. 1 Te Araroa earthquake and dynamic reinvigoration of its aftershock sequence by the MW7. 8 Kaikōura earthquake, New Zealand. Earth and Planetary Science Letters, 482, pp.265-276.
  • Walter, J.I., Chang, J.C. and Dotray, P.J., 2017. Foreshock seismicity suggests gradual differential stress increase in the months prior to the 3 September 2016 Mw 5.8 Pawnee earthquake. Seismological Research Letters, 88(4), pp.1032-1039.
  • Kato, A., Fukuda, J.I., Kumazawa, T. and Nakagawa, S., 2016. Accelerated nucleation of the 2014 Iquique, Chile Mw 8.2 earthquake. Scientific Reports, 6(1), pp.1-9.
  • Bouchon, M., Marsan, D., Durand, V., Campillo, M., Perfettini, H., Madariaga, R. and Gardonio, B., 2016. Potential slab deformation and plunge prior to the Tohoku, Iquique and Maule earthquakes. Nature Geoscience, 9(5), pp.380-383.
  • Sugan, M., Kato, A., Miyake, H., Nakagawa, S. and Vuan, A., 2014. The preparatory phase of the 2009 Mw 6.3 L’Aquila earthquake by improving the detection capability of low‐magnitude foreshocks. Geophysical Research Letters, 41(17), pp.6137-6144.
  • Kato, A. and Nakagawa, S., 2014. Multiple slow‐slip events during a foreshock sequence of the 2014 Iquique, Chile Mw 8.1 earthquake. Geophysical Research Letters, 41(15), pp.5420-5427.
  • Yagi, Y., Okuwaki, R., Enescu, B., Hirano, S., Yamagami, Y., Endo, S. and Komoro, T., 2014. Rupture process of the 2014 Iquique Chile earthquake in relation with the foreshock activity. Geophysical Research Letters, 41(12), pp.4201-4206.
  • Mignan, A., 2014. The debate on the prognostic value of earthquake foreshocks: A meta-analysis. Scientific Reports, 4(1), pp.1-5.
  • Chen, X. and Shearer, P.M., 2013. California foreshock sequences suggest aseismic triggering process. Geophysical Research Letters, 40(11), pp.2602-2607.
  • Bouchon, M., Durand, V., Marsan, D., Karabulut, H. and Schmittbuhl, J., 2013. The long precursory phase of most large interplate earthquakes. Nature Geoscience, 6(4), pp.299-302.
  • Tape, C., West, M., Silwal, V. and Ruppert, N., 2013. Earthquake nucleation and triggering on an optimally oriented fault. Earth and Planetary Science Letters, 363, pp.231-241.
  • Ando, R. and Imanishi, K., 2011. Possibility of Mw 9.0 mainshock triggered by diffusional propagation of after-slip from Mw 7.3 foreshock. Earth, Planets and Space, 63(7), pp.767-771.
  • Papadopoulos, G.A., Charalampakis, M., Fokaefs, A. and Minadakis, G., 2010. Strong foreshock signal preceding the L’Aquila (Italy) earthquake (Mw 6.3) of 6 April 2009. Natural Hazards and Earth System Sciences, 10(1), pp.19-24.
  • Lin, C.H., 2009. Foreshock characteristics in Taiwan: Potential earthquake warning. Journal of Asian Earth Sciences, 34(5), pp.655-662.
  • Peng, Z., Vidale, J.E., Ishii, M. and Helmstetter, A., 2007. Seismicity rate immediately before and after main shock rupture from high‐frequency waveforms in Japan. Journal of Geophysical Research: Solid Earth, 112(B3).
  • Lin, C.H., 2004. Repeated foreshock sequences in the thrust faulting environment of eastern Taiwan. Geophysical Research Letters, 31(13).
  • Ellsworth, W.L. and Beroza, G.C., 1998. Observation of the seismic nucleation phase in the Ridgecrest, California, earthquake sequence. Geophysical Research Letters, 25(3), pp.401-404.
  • Dodge, D.A., Beroza, G.C. and Ellsworth, W.L., 1996. Detailed observations of California foreshock sequences: Implications for the earthquake initiation process. Journal of Geophysical Research: Solid Earth, 101(B10), pp.22371-22392.
  • Beroza, G.C. and Ellsworth, W.L., 1996. Properties of the seismic nucleation phase. Tectonophysics, 261(1-3), pp.209-227.
  • Dodge, D.A., Beroza, G.C. and Ellsworth, W.L., 1995. Foreshock sequence of the 1992 Landers, California, earthquake and its implications for earthquake nucleation. Journal of Geophysical Research: Solid Earth, 100(B6), pp.9865-9880.

Total of 44 selected articles
Nature Geoscience: 6
Science Advances: 1
GRL: 10
GJI: 1
SRL: 5

Tectonophysics: 1
EPS: 2
CEE: 1