Reading List (printed papers for personal use)
History of Seismology
- Wang, K., Chen, Q.F., Sun, S. and Wang, A., 2006. Predicting the 1975 Haicheng earthquake. Bulletin of the Seismological Society of America, 96(3), pp.757-795. https://doi.org/10.1785/0120050191
- Agnew, D.C., Lee, W.H.K., Kanamori, H., Jennings, P.C. and Kisslinger, C., 2002. History of seismology. International Handbook of Earthquake and Engineering Seismology, 81(A), pp.3-11. [Link]
- Ben-Menahem, A., 1995. A concise history of mainstream seismology: Origins, legacy, and perspectives. Bulletin of the Seismological Society of America, 85(4), pp.1202-1225. https://doi.org/10.1785/BSSA0850041202
Seismic Instrumentation and Data
- Burky, A.L., Irving, J.C. and Simons, F.J., 2021. Instrument response removal and the 2020 MLg 3.1 Marlboro, New Jersey, earthquake. Seismological Research Letters, 92(6), pp.3865-3872. https://doi.org/10.1785/0220210118
- Ringler, A.T. and Bastien, P., 2020. A brief introduction to seismic instrumentation: Where does my data come from?. Seismological Research Letters, 91(2A), pp.1074-1083. https://doi.org/10.1785/0220190214
- Ringler, A.T. and Evans, J.R., 2015. A quick SEED tutorial. Seismological Research Letters, 86(6), pp.1717-1725. https://doi.org/10.1785/0220150043
Fault maturity
- Manighetti, I., Mercier, A. and De Barros, L., 2021. Fault trace corrugation and segmentation as a measure of fault structural maturity. Geophysical Research Letters, 48(20), p.e2021GL095372. https://doi.org/10.1029/2021GL095372
- Thakur, P. and Huang, Y., 2021. Influence of fault zone maturity on fully dynamic earthquake cycles. Geophysical Research Letters, 48(17), p.e2021GL094679. https://doi.org/10.1029/2021GL094679
- Perrin, C., Waldhauser, F. and Scholz, C.H., 2021. The shear deformation zone and the smoothing of faults with displacement. Journal of Geophysical Research: Solid Earth, 126(5), p.e2020JB020447. https://doi.org/10.1029/2020JB020447
- Perrin, C., Manighetti, I., Ampuero, J.P., Cappa, F. and Gaudemer, Y., 2016. Location of largest earthquake slip and fast rupture controlled by along‐strike change in fault structural maturity due to fault growth. Journal of Geophysical Research: Solid Earth, 121(5), pp.3666-3685. https://doi.org/10.1002/2015JB012671
- Manighetti, I., Campillo, M., Bouley, S. and Cotton, F., 2007. Earthquake scaling, fault segmentation, and structural maturity. Earth and Planetary Science Letters, 253(3-4), pp.429-438. https://doi.org/10.1016/j.epsl.2006.11.004
Earthquake Stress Drop
- Neely, J.S., Stein, S. and Spencer, B.D., 2020. Large uncertainties in earthquake stress‐drop estimates and their tectonic consequences. Seismological Research Letters, 91(4), pp.2320-2329. https://doi.org/10.1785/0220200004
- Chounet, A., Vallée, M., Causse, M. and Courboulex, F., 2018. Global catalog of earthquake rupture velocities shows anticorrelation between stress drop and rupture velocity. Tectonophysics, 733, pp.148-158. https://doi.org/10.1016/j.tecto.2017.11.005
- Causse, M. and Song, S.G., 2015. Are stress drop and rupture velocity of earthquakes independent? Insight from observed ground motion variability. Geophysical Research Letters, 42(18), pp.7383-7389. https://doi.org/10.1002/2015GL064793
- Cotton, F., Archuleta, R. and Causse, M., 2013. What is sigma of the stress drop?. Seismological Research Letters, 84(1), pp.42-48. https://doi.org/10.1785/0220120087
- Allmann, B.P. and Shearer, P.M., 2009. Global variations of stress drop for moderate to large earthquakes. Journal of Geophysical Research: Solid Earth, 114(B1). https://doi.org/10.1029/2008JB005821
Active Tectonics
- Wu, Z. and Hu, M., 2019. Neotectonics, active tectonics and earthquake geology: terminology, applications and advances. Journal of Geodynamics, 127, pp.1-15. https://doi.org/10.1016/j.jog.2019.01.007
- Machette, M.N., 2000. Active, capable, and potentially active faults—a paleoseismic perspective. Journal of Geodynamics, 29(3-5), pp.387-392. https://doi.org/10.1016/S0264-3707(99)00060-5
Dynamic Triggering (Basic)
- Hill, D.P., 2015. On the sensitivity of transtensional versus transpressional tectonic regimes to remote dynamic triggering by Coulomb failure. Bulletin of the Seismological Society of America, 105(3), pp.1339-1348. https://doi.org/10.1785/0120140292
- Hill, D.P., 2010. Surface-wave potential for triggering tectonic (nonvolcanic) tremor. Bulletin of the Seismological Society of America, 100(5A), pp.1859-1878. https://doi.org/10.1785/0120090362
- Hill, D.P., 2008. Dynamic stresses, Coulomb failure, and remote triggering. Bulletin of the Seismological Society of America, 98(1), pp.66-92. https://doi.org/10.1785/0120070049
Intermediate-Depth and Deep Earthquakes
- Ye, L., Lay, T. and Kanamori, H., 2020. Anomalously low aftershock productivity of the 2019 MW 8.0 energetic intermediate-depth faulting beneath Peru. Earth and Planetary Science Letters, 549, p.116528. https://doi.org/10.1016/j.epsl.2020.116528
- Zhan, Z., 2020. Mechanisms and implications of deep earthquakes. Annual Review of Earth and Planetary Sciences, 48, pp.147-174. https://doi.org/10.1146/annurev-earth-053018-060314
- Ruiz, S., Tavera, H., Poli, P., Herrera, C., Flores, C., Rivera, E. and Madariaga, R., 2017. The deep Peru 2015 doublet earthquakes. Earth and Planetary Science Letters, 478, pp.102-109. https://doi.org/10.1016/j.epsl.2017.08.036
Synthetic Seismograms
- Zhu, L. and Rivera, L.A., 2002. A note on the dynamic and static displacements from a point source in multilayered media. Geophysical Journal International, 148(3), pp.619-627. https://doi.org/10.1046/j.1365-246X.2002.01610.x
- Kikuchi, M. and Kanamori, H., 1991. Inversion of complex body waves—III. Bulletin of the Seismological Society of America, 81(6), pp.2335-2350. https://doi.org/10.1785/BSSA0810062335
- Bouchon, M., 1981. A simple method to calculate Green’s functions for elastic layered media. Bulletin of the Seismological Society of America, 71(4), pp.959-971. https://doi.org/10.1785/BSSA0710040959
- Hartzell, S.H., 1978. Earthquake aftershocks as Green’s functions. Geophysical Research Letters, 5(1), pp.1-4. https://doi.org/10.1029/GL005i001p00001
- Langston, C.A. and Helmberger, D.V., 1975. A procedure for modelling shallow dislocation sources. Geophysical Journal International, 42(1), pp.117-130. https://doi.org/10.1111/j.1365-246X.1975.tb05854.x
- Helmberger, D.V., 1974. Generalized ray theory for shear dislocations. Bulletin of the Seismological Society of America, 64(1), pp.45-64. https://doi.org/10.1785/BSSA0640010045
Earthquake Source Scaling
- Miyakoshi, K., Somei, K., Yoshida, K., Kurahashi, S., Irikura, K. and Kamae, K., 2020. Scaling relationships of source parameters of inland crustal earthquakes in tectonically active regions. Pure and Applied Geophysics, 177(5), pp.1917-1929. https://doi.org/10.1007/s00024-019-02160-0
- Thingbaijam, K.K.S., Martin Mai, P. and Goda, K., 2017. New empirical earthquake source‐scaling laws. Bulletin of the Seismological Society of America, 107(5), pp.2225-2246. https://doi.org/10.1785/0120170017
- Irikura, K. and Miyake, H., 2011. Recipe for predicting strong ground motion from crustal earthquake scenarios. Pure and Applied Geophysics, 168(1), pp.85-104. https://doi.org/10.1007/s00024-010-0150-9
- Mai, P.M. and Beroza, G.C., 2000. Source scaling properties from finite-fault-rupture models. Bulletin of the Seismological Society of America, 90(3), pp.604-615. https://doi.org/10.1785/0119990126
Earthquake Physics
- Ben‐Zion, Y., 2008. Collective behavior of earthquakes and faults: Continuum‐discrete transitions, progressive evolutionary changes, and different dynamic regimes. Reviews of Geophysics, 46(4). https://doi.org/10.1029/2008RG000260
Repeating Earthquakes
- Gao, D., Kao, H. and Wang, B., 2021. Misconception of waveform similarity in the identification of repeating earthquakes. Geophysical Research Letters, 48(13), p.e2021GL092815. https://doi.org/10.1029/2021GL092815
- Valenzuela-Malebrán, C., Cesca, S., Ruiz, S., Passarelli, L., Leyton, F., Hainzl, S., Potin, B. and Dahm, T., 2021. Seismicity clusters in Central Chile: investigating the role of repeating earthquakes and swarms in a subduction region. Geophysical Journal International, 224(3), pp.2028-2043. https://doi.org/10.1093/gji/ggaa562
- Chaves, E.J., Schwartz, S.Y. and Abercrombie, R.E., 2020. Repeating earthquakes record fault weakening and healing in areas of megathrust postseismic slip. Science Advances, 6(32), p.eaaz9317. https://doi.org/10.1126/sciadv.aaz9317
- Uchida, N., Kalafat, D., Pinar, A. and Yamamoto, Y., 2019. Repeating earthquakes and interplate coupling along the western part of the North Anatolian Fault. Tectonophysics, 769, p.228185. https://doi.org/10.1016/j.tecto.2019.228185
- Liu, M., Li, H., Peng, Z., Ouyang, L., Ma, Y., Ma, J., Liang, Z. and Huang, Y., 2019. Spatial-temporal distribution of early aftershocks following the 2016 Ms 6.4 Menyuan, Qinghai, China Earthquake. Tectonophysics, 766, pp.469-479. https://doi.org/10.1016/j.tecto.2019.06.022
- Shakibay Senobari, N. and Funning, G.J., 2019. Widespread fault creep in the northern San Francisco Bay Area revealed by multistation cluster detection of repeating earthquakes. Geophysical Research Letters, 46(12), pp.6425-6434. https://doi.org/10.1029/2019GL082766
- Uchida, N., 2019. Detection of repeating earthquakes and their application in characterizing slow fault slip. Progress in Earth and Planetary Science, 6(1), pp.1-21. https://doi.org/10.1186/s40645-019-0284-z
- Uchida, N. and Bürgmann, R., 2019. Repeating earthquakes. Annual Review of Earth and Planetary Sciences, 47, pp.305-332. https://doi.org/10.1146/annurev-earth-053018-060119
- Sugan, M., Vuan, A., Kato, A., Massa, M. and Amati, G., 2019. Seismic evidence of an early afterslip during the 2012 sequence in Emilia (Italy). Geophysical Research Letters, 46(2), pp.625-635. https://doi.org/10.1029/2018GL079617
- Yao, D., Walter, J.I., Meng, X., Hobbs, T.E., Peng, Z., Newman, A.V., Schwartz, S.Y. and Protti, M., 2017. Detailed spatiotemporal evolution of microseismicity and repeating earthquakes following the 2012 Mw 7.6 Nicoya earthquake. Journal of Geophysical Research: Solid Earth, 122(1), pp.524-542. https://doi.org/10.1002/2016JB013632
- Chen, K.H., Nadeau, R.M. and Rau, R.J., 2008. Characteristic repeating earthquakes in an arc-continent collision boundary zone: The Chihshang fault of eastern Taiwan. Earth and Planetary Science Letters, 276(3-4), pp.262-272. https://doi.org/10.1016/j.epsl.2008.09.021
- Uchida, N., Matsuzawa, T., Hasegawa, A. and Igarashi, T., 2003. Interplate quasi‐static slip off Sanriku, NE Japan, estimated from repeating earthquakes. Geophysical Research Letters, 30(15). https://doi.org/10.1029/2003GL017452
- Nadeau, R.M. and Johnson, L.R., 1998. Seismological studies at Parkfield VI: Moment release rates and estimates of source parameters for small repeating earthquakes. Bulletin of the Seismological Society of America, 88(3), pp.790-814. https://doi.org/10.1785/BSSA0880030790
- Poupinet, G., Ellsworth, W.L. and Frechet, J., 1984. Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras Fault, California. Journal of Geophysical Research: Solid Earth, 89(B7), pp.5719-5731. https://doi.org/10.1029/JB089iB07p05719
Slow earthquakes
- Plata-Martínez, R., Ide, S., Shinohara, M., Garcia, E.S., Mizuno, N., Dominguez, L.A., Taira, T.A., Yamashita, Y., Toh, A., Yamada, T. and Real, J., 2021. Shallow slow earthquakes to decipher future catastrophic earthquakes in the Guerrero seismic gap. Nature Communications, 12(1), pp.1-8. https://doi.org/10.1038/s41467-021-24210-9
- Obara, K., 2020. Characteristic activities of slow earthquakes in Japan. Proceedings of the Japan Academy, Series B, 96(7), pp.297-315. https://doi.org/10.2183/pjab.96.022
- Jolivet, R. and Frank, W.B., 2020. The transient and intermittent nature of slow slip. AGU Advances, 1(1), p.e2019AV000126. https://doi.org/10.1029/2019AV000126
- Baba, S., Takeo, A., Obara, K., Matsuzawa, T. and Maeda, T., 2020. Comprehensive detection of very low frequency earthquakes off the Hokkaido and Tohoku Pacific coasts, northeastern Japan. Journal of Geophysical Research: Solid Earth, 125(1), p.e2019JB017988. https://doi.org/10.1029/2019JB017988
- Warren-Smith, E., Fry, B., Wallace, L., Chon, E., Henrys, S., Sheehan, A., Mochizuki, K., Schwartz, S., Webb, S. and Lebedev, S., 2019. Episodic stress and fluid pressure cycling in subducting oceanic crust during slow slip. Nature Geoscience, 12(6), pp.475-481. https://doi.org/10.1038/s41561-019-0367-x
- Bürgmann, R., 2018. The geophysics, geology and mechanics of slow fault slip. Earth and Planetary Science Letters, 495, pp.112-134. https://doi.org/10.1016/j.epsl.2018.04.062
- Ando, M., Tu, Y., Kumagai, H., Yamanaka, Y. and Lin, C.H., 2012. Very low frequency earthquakes along the Ryukyu subduction zone. Geophysical Research Letters, 39(4). https://doi.org/10.1029/2011GL050559
- Peng, Z. and Gomberg, J., 2010. An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nature Geoscience, 3(9), pp.599-607. https://doi.org/10.1038/ngeo940
Seismicity b-value
- Zaccagnino, D., Telesca, L. and Doglioni, C., 2022. Scaling properties of seismicity and faulting. Earth and Planetary Science Letters, 584, p.117511. https://doi.org/10.1016/j.epsl.2022.117511
- Nanjo, K.Z., 2020. Were changes in stress state responsible for the 2019 Ridgecrest, California, earthquakes?. Nature Communications, 11(1), pp.1-10. https://doi.org/10.1038/s41467-020-16867-5
- Gulia, L., Rinaldi, A.P., Tormann, T., Vannucci, G., Enescu, B. and Wiemer, S., 2018. The effect of a mainshock on the size distribution of the aftershocks. Geophysical Research Letters, 45(24), pp.13-277. https://doi.org/10.1029/2018GL080619
- Huang, Y. and Beroza, G.C., 2015. Temporal variation in the magnitude‐frequency distribution during the Guy‐Greenbrier earthquake sequence. Geophysical Research Letters, 42(16), pp.6639-6646. https://doi.org/10.1002/2015GL065170
- Scholz, C.H., 2015. On the stress dependence of the earthquake b value. Geophysical Research Letters, 42(5), pp.1399-1402. https://doi.org/10.1002/2014GL062863
- Görgün, E., 2014. Reply to comments by Yavor Kamer and Stefan Hiemer on “Analysis of the b-values before and after the 23 October 2011 Mw 7.2 Van-Erciş, Turkey Earthquake”. Tectonophysics, (630), pp.313-318. https://doi.org/10.1016/j.tecto.2014.06.018
- Kamer, Y. and Hiemer, S., 2013. Comment on “Analysis of the b-values before and after the 23 October 2011 Mw 7.2 Van–Erciş, Turkey, earthquake”. Tectonophysics, (608), pp.1448-1451. https://doi.org/10.1016/j.tecto.2013.07.040
Study of small earthquakes
- Zhang, M., Liu, M., Plourde, A., Bao, F., Wang, R. and Gosse, J., 2021. Source characterization for two small earthquakes in Dartmouth, Nova Scotia, Canada: Pushing the limit of single station. Seismological Research Letters, 92(4), pp.2540-2550. https://doi.org/10.1785/0220200297
- Semmane, F., Benabdeloued, B.Y.N., Heddar, A. and Khelif, M.F., 2017. The 2014 Mihoub earthquake (Mw4.3), northern Algeria: empirical Green’s function analysis of the mainshock and the largest aftershock. Journal of Seismology, 21(6), pp.1385-1395. https://doi.org/10.1007/s10950-017-9671-3
Seismic Swarm
- Fischer, T. and Hainzl, S., 2021. The growth of earthquake clusters. Frontiers in Earth Science, 9, p.79. https://doi.org/10.3389/feart.2021.638336
- De Barros, L., Cappa, F., Deschamps, A. and Dublanchet, P., 2020. Imbricated aseismic slip and fluid diffusion drive a seismic swarm in the Corinth Gulf, Greece. Geophysical Research Letters, 47(9), p.e2020GL087142. https://doi.org/10.1029/2020GL087142
- Hatch, R.L., Abercrombie, R.E., Ruhl, C.J. and Smith, K.D., 2020. Evidence of aseismic and fluid‐driven processes in a small complex seismic swarm near Virginia City, Nevada. Geophysical Research Letters, 47(4), p.e2019GL085477. https://doi.org/10.1029/2019GL085477
- Vavryčuk, V. and Hrubcová, P., 2017. Seismological evidence of fault weakening due to erosion by fluids from observations of intraplate earthquake swarms. Journal of Geophysical Research: Solid Earth, 122(5), pp.3701-3718. https://doi.org/10.1002/2017JB013958
- Heinze, T., Hamidi, S., Galvan, B. and Miller, S.A., 2017. Numerical simulation of the 2008 West-Bohemian earthquake swarm. Tectonophysics, 694, pp.436-443. https://doi.org/10.1016/j.tecto.2016.11.028
- Heinze, T., Galvan, B. and Miller, S.A., 2015. A new method to estimate location and slip of simulated rock failure events. Tectonophysics, 651, pp.35-43. https://doi.org/10.1016/j.tecto.2015.03.009
- Shelly, D.R., Moran, S.C. and Thelen, W.A., 2013. Evidence for fluid‐triggered slip in the 2009 Mount Rainier, Washington earthquake swarm. Geophysical Research Letters, 40(8), pp.1506-1512. https://doi.org/10.1002/grl.50354
- Cappa, F., Rutqvist, J. and Yamamoto, K., 2009. Modeling crustal deformation and rupture processes related to upwelling of deep CO2‐rich fluids during the 1965–1967 Matsushiro earthquake swarm in Japan. Journal of Geophysical Research: Solid Earth, 114(B10). https://doi.org/10.1029/2009JB006398
- Hainzl, S., 2004. Seismicity patterns of earthquake swarms due to fluid intrusion and stress triggering. Geophysical Journal International, 159(3), pp.1090-1096. https://doi.org/10.1111/j.1365-246X.2004.02463.x
- Parotidis, M., Rothert, E. and Shapiro, S.A., 2003. Pore‐pressure diffusion: A possible triggering mechanism for the earthquake swarms 2000 in Vogtland/NW‐Bohemia, central Europe. Geophysical research letters, 30(20). https://doi.org/10.1029/2003GL018110
- Costain, J.K., Bollinger, G.A. and Speer, J.A., 1987. Hydroseismicity—A hypothesis for the role of water in the generation of intraplate seismicity. Geology, 15(7), pp.618-621. <a href=”https://doi.org/10.1130/0091-7613(1987)15<a href=”https://doi.org/10.1130/0091-7613(1987)15https://doi.org/10.1130/0091-7613(1987)15<618:HHFTRO>2.0.CO;2
Volcano Seismology
- Cui, X., Li, Z. and Huang, H., 2021. Subdivision of seismicity beneath the summit region of Kilauea volcano: Implications for the preparation process of the 2018 eruption. Geophysical Research Letters, 48(20), p.e2021GL094698. https://doi.org/10.1029/2021GL094698
- Moyer, P.A., Boettcher, M.S., Bohnenstiehl, D.R. and Abercrombie, R.E., 2020. Crustal strength variations inferred from earthquake stress drop at Axial Seamount surrounding the 2015 eruption. Geophysical Research Letters, 47(16), p.e2020GL088447. https://doi.org/10.1029/2020GL088447
- Hendriyana, A. and Tsuji, T., 2019. Migration of very long period seismicity at Aso volcano, Japan, associated with the 2016 Kumamoto earthquake. Geophysical Research Letters, 46(15), pp.8763-8771. https://doi.org/10.1029/2019GL082645
- Syahbana, D.K., Kasbani, K., Suantika, G., Prambada, O., Andreas, A.S., Saing, U.B., Kunrat, S.L., Andreastuti, S., Martanto, M., Kriswati, E. and Suparman, Y., 2019. The 2017–19 activity at Mount Agung in Bali (Indonesia): Intense unrest, monitoring, crisis response, evacuation, and eruption. Scientific Reports, 9(1), pp.1-17. https://doi.org/10.1038/s41598-019-45295-9
- Albino, F., Biggs, J. and Syahbana, D.K., 2019. Dyke intrusion between neighbouring arc volcanoes responsible for 2017 pre-eruptive seismic swarm at Agung. Nature Communications, 10(1), pp.1-11. https://doi.org/10.1038/s41467-019-08564-9
- Duputel, Z., Lengliné, O. and Ferrazzini, V., 2019. Constraining spatiotemporal characteristics of magma migration at Piton de la Fournaise volcano from pre‐eruptive seismicity. Geophysical Research Letters, 46(1), pp.119-127. https://doi.org/10.1029/2018GL080895
- Lin, C.H., Lai, Y.C., Shih, M.H., Pu, H.C. and Lee, S.J., 2018. Seismic detection of a magma reservoir beneath Turtle Island of Taiwan by S-wave shadows and reflections. Scientific Reports, 8(1), pp.1-12. https://doi.org/10.1038/s41598-018-34596-0
- Gertisser, R., Deegan, F.M., Troll, V.R. and Preece, K., 2018. When the gods are angry: volcanic crisis and eruption at Bali’s great volcano. Geology Today, 34(2), pp.62-65. https://doi.org/10.1111/gto.12224
- Lesage, P., Heap, M.J. and Kushnir, A., 2018. A generic model for the shallow velocity structure of volcanoes. Journal of Volcanology and Geothermal Research, 356, pp.114-126. https://doi.org/10.1016/j.jvolgeores.2018.03.003
- Zhang, M. and Wen, L., 2015. Earthquake characteristics before eruptions of Japan’s Ontake volcano in 2007 and 2014. Geophysical Research Letters, 42(17), pp.6982-6988. https://doi.org/10.1002/2015GL065165
- Kato, A., Terakawa, T., Yamanaka, Y., Maeda, Y., Horikawa, S., Matsuhiro, K. and Okuda, T., 2015. Preparatory and precursory processes leading up to the 2014 phreatic eruption of Mount Ontake, Japan. Earth, Planets and Space, 67(1), pp.1-11. https://doi.org/10.1186/s40623-015-0288-x
- Lin, C.H., Hsu, L.W., Ho, M.Y., Shin, T.C., Chen, K.J. and Yeh, Y.H., 2007. Low‐frequency submarine volcanic swarms at the southwestern end of the Okinawa Trough. Geophysical research letters, 34(6). https://doi.org/10.1029/2006GL029207
- Walter, T.R., Wang, R., Zimmer, M., Grosser, H., Lühr, B. and Ratdomopurbo, A., 2007. Volcanic activity influenced by tectonic earthquakes: Static and dynamic stress triggering at Mt. Merapi. Geophysical Research Letters, 34(5). https://doi.org/10.1029/2006GL028710
- Roman, D.C. and Cashman, K.V., 2006. The origin of volcano-tectonic earthquake swarms. Geology, 34(6), pp.457-460. https://doi.org/10.1130/G22269.1
- Buurman, H. and West, M.E., 2006. Seismic precursors to volcanic explosions during the 2006 eruption of Augustine Volcano. The, pp.41-57. (Link)
Earthquake Initiation
- Colombelli, S., Festa, G. and Zollo, A., 2020. Early rupture signals predict the final earthquake size. Geophysical Journal International, 223(1), pp.692-706. https://doi.org/10.1093/gji/ggaa343
- Renou, J., Vallée, M. and Dublanchet, P., 2019. How does seismic rupture accelerate? Observational insights from earthquake source time functions. Journal of Geophysical Research: Solid Earth, 124(8), pp.8942-8952. https://doi.org/10.1029/2019JB018045
- Melgar, D. and Hayes, G.P., 2019. Characterizing large earthquakes before rupture is complete. Science Advances, 5(5), p.eaav2032. https://doi.org/10.1126/sciadv.aav2032
- Okuda, T. and Ide, S., 2018. Hierarchical rupture growth evidenced by the initial seismic waveforms. Nature Communications, 9(1), pp.1-7. https://doi.org/10.1038/s41467-018-06168-3